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In recent years, there has been much interest in preparing
homogeneous dispersions of single-wall carbon nanotubes (SWNTs),
suitable for processing into thin films and composites exploiting
the unrivalled properties of carbon nanotubes. The main routes
consist of end1 and/or sidewall functionalization,2 use of surfactants
with sonication or high-shear mixing,3-6 polymer wrapping of
nanotubes,7-10 and protonation by superacids.11 Although these
methods are quite successful, they often indicate cutting the tubes
into smaller pieces (sonication and/or functionalization), thus partly
losing the high aspect ratio of SWNTs. All these routes follow one
strategy, which consists of intercalating a mediator between the
tubes to counterbalance the strong van der Waals energy. This
mediator yields metastable dispersions when noncovalently ad-
sorbed, and chemically modified carbon structures when covalently
bound. Here we show that, upon reduction with alkali metals,
SWNTs form polyelectrolyte salts that are soluble in polar organic
solvents without any sonication, use of surfactants, or functional-
ization whatsoever, thus forming true thermodynamically stable
solutions of naked SWNTs that can be processed into composite
thin films of unmodified and uncut SWNTs.

Ionic organic or inorganic macromolecules, referred to as
polyelectrolytes, dissolve spontaneously in polar solvents upon ionic
dissociation. We discovered that carbon nanotube salts can bear a
sufficient electrostatic charge to form a new, stiff, conducting
polyelectrolyte.

Indeed, SWNTs reduced with Li or Na12 dissolve spontaneously
(Figure 1) in polar aprotic solvents such as sulfolane, dimethyl
sulfoxide (DMSO),N-methylformamide (NMF), dimethylforma-
mide (DMF), 1-methyl-2-pyrrolidone (NMP), etc. in concentration
up to 2.0 mg/g in DMSO and 4.2 mg/g in sulfolane. Being at
thermodynamic equilibrium, the nanotube polyelectrolyte solution
(Figure S1) is indefinitely stable (at least 1 year) when prepared
and kept under inert atmosphere (since the reduced form of SWNTs
is air sensitive). Such spontaneous dissolution was obtained for
SWNTs synthesized from the electric arc process as well as from
the HiPco process, albeit less efficiently in the latter case (0.4 mg/g
in DMSO vs 2 mg/g for electric arc SWNTs). The absorption
spectrum (Figure S2) shows a monotonic decrease above 260 nm
(DMSO absorbs below). In particular, the absorption bands expected
at ca. 700, 1000, and 1750 nm, corresponding to transitions between
the symmetric van Hove singularities in the density of states, are
absent. This is consistent with the fact that the SWNTs are fully
doped; hence, discrete electronic transitions disappear.12 Raman
spectra are shown in Figure 2 for a DMSO solution of [Na-
(THF)]nNT, before and after air oxidation and, for comparison, the
spectrum of a suspension of SWNT with Triton×100. The solution
shows a broadening, an upshift from 1591 to 1596 cm-1 and a loss

of intensity of the tangential mode (TM), a broad asymmetric band
around 1320 cm-1, and disappearance of the radial breathing mode
(RBM) around 190 cm-1, all features characteristic of charged
SWNTs13,14while the oxidized solution shows the classical feature
of neutral NTs.15 Raman spectra are thus fully consistent with the
existence of SWNTs in solution and the necessary charging of the
NTs for dissolution. Atomic force microscopy (AFM) pictures
(Figure 3) of diluted solutions deposited on mica reproducibly show
micrometer-long nanotubes. Height measurements yield a height
of about 1 nm on all nanotubes measured thus far, consistent with
the presence of isolated SWNTs in the solution. For such high
molecular weight species, it is not straightforward to state that the
dispersion is a true solution rather than a metastable suspension.16

The fact that lithium or sodium salts of SWNTs dissolve spontane-
ously, i.e., with no supplied energy, and that the solutions are stable
confirms true thermodynamic solution character, as expected for a
classical polyelectrolyte. Furthermore, the first AFM images
pointing to true exfoliation support a dissolution mechanism.

Elemental analysis (see Supporting Information) yields a chemi-
cal formula of A(THF)C10 (A ) Li, Na), hence, one negative charge
per 10 carbon atoms.17 Taking as hypothesis a carbon-carbon
distance of 1.42 Å, as in graphite, one obtains a mean surface area
per negative charge of 26 Å2 on the nanotube surface, hence a mean
distance of ca. 5.1 Å. The Bjerrum length,18 i.e., the distance
between dissociatedcharges set by the competition between
electrostatic condensation and thermal energy, is 12 Å at room
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Figure 1. (a-f) Sequential photographs of the spontaneous dissolution of
[Na(THF)]nNT in a drop of DMSO.

Figure 2. Raman spectra of [Na(THF)]nNT in DMSO (see text), taken
with a 514.5 nm laser excitation. The starred bands come from the solvent.
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temperature (using the relative dielectric constant of DMSO, 46.45
at 20°C). This corresponds to a maximum possible surface density
of one charge per 144 Å2. Hence, only one out of five charges are
dissociated, whereas the others are canceled through condensation
of alkali cations (Figure 4). Incidentally, this ratio of 20% is often
encountered in surfactant micellar suspensions.19 The important
point is that the nanotubes, although reduced to LiC10 or NaC10,
bear their maximum allowed surface charge density. Actually, it
can even be predicted that a stoichiometry of Na(THF)C50 should
be enough to dissolve SWNTs.

Composites and conducting/antistatic coatings are some of the
most sought-after applications of carbon nanotubes. Homogeneous,
stable, and spontaneously formed solutions of unmodified SWNTs
should be a welcome starting material for obtaining such devices.
Indeed, preliminary experiments show that PVA composite films
can be obtained with improved mechanical properties when
compared to pure PVA. Another important development, unique
to these SWNT solutions, is the possibility to selectively and
stoichiometrically functionalize the nanotube walls in the same way
as in the early days of C60 chemistry where C60Rn molecules could
be selectively obtained from C60

n- solutions.20 Indeed, by adjusting
the charge on the nanotubes, one could precisely monitor the amount

of attached functional groups on the SWNT.17,21-22 We are now
exploring the possibilities of obtaining such multifunctional materi-
als by coupling the mechanical and electronic properties of the
SWNT backbone with specific properties of the attached functional
group (polymers, sensors, photochemical devices, etc.).
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Figure 3. AFM height image of electric arc SWNTs deposited on mica
from solution (see text).

Figure 4. Sketch of a negatively charged nanotube with its surrounding
lithium cations and THF molecules (not to scale).
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